| 网站首页 | 数学 | 名师 | 奥数 | 下载 | 素材 | 交流 | 智力 | 专业 | 设计 | 中学 | 数学博览 | 
您现在的位置: 小学数学专业网 >> 奥数 >> 名师指导 >> 正文 用户登录 新用户注册
五年级学生如何学好奥数
作者:巨人专家    奥数来源:巨人学校    点击数:    更新时间:2009-3-3
查找本文相关资源   相关书籍

  五年级下学期是小升初前的最后一个学期,对于整个小学阶段的数学学习起着至关重要的作用,只有这一关过好了,才可能在小升初的备考中游刃有余。所以这学期的奥数学习应该有更强的针对性,针对自己的实际情况和目标选择合适的班型。

巨人专家给您以下建议:
1、继续学习五年级下半学期的华数知识。
  这里的数论和方程的方法是目前北京市小升初考试的重要考点。学习新课时应该选择一本经典的教材,仁华课本非常不错,它是一套很完整、成熟的教材,也是目前选用最多的一本教材,几乎涵盖了全部的五年级奥数重点,拿下仁华课本可以打下很好的基础。
2、多做专题的练习。
  五年级是接触专题最多的时期,小学阶段的重要知识点和难点也都集中在这个阶段。其中数论、行程问题、排列组合是重中之重,如果这几个专题掌握的不好,想上一个理想的中学是非常困难的。做专题练习也不能光看做了多少道题,要保证练一道会一道,真正的理解并掌握所做的题目,日积月累,几个重点难点也就不再是老大难问题了。
3、
多做真题。
  真题的练习包括历年的竞赛真题和小升初考试真题。做真题可以使自己更好的了解近几年的考试方向和考试的重点,有助于在平时的学习中找到突破口,集中力量学好考试中最常见的专题。
4、
巩固基础知识。
  由于还有半年就要转入小升初的复习阶段,所以五年级之前的奥数基础内容一定要掌握好。之前的奥数内容以应用题、计算为主。对于基本应用题建议利用方程的方法求解,可以达到事半功倍的效果。计算问题需要对基本的简算方法了如指掌,因为这些方法也是以后分数计算和综合混合运算的基础。
 
学习重点难点解析:
  五年级属于 小学高年级,孩子进入五年级以后,随着年龄的增长,孩子的计算能力,认知能力,逻辑分析能力都比以前有很大的提高,这个时期是奥数思维形成的关键时期,是学奥数的黄金时段,所以是否把握住五年级这个黄金时段,关系到以后小升初的成与败。那么在整个五年级阶段都有哪些重点知识呢?为了孩子更好的把握五年级的学习重点,下面就介绍一下五年级的关键知识点。
 
1.进入数学宝库的分析方法——递推方法。
  任何事物的发展总是从简单到复杂,奥数也是一样,对于复杂问题,我们不妨先从最简单的情况入手,通过处理简单的问题,我们可以从中得到规律或者诀窍,从而来解决复杂的问题,这就是递推方法。比如说:平面上2008条直线最多有几个交点? 同学们第一眼看到这个问题时,肯定会想画2008条直线相交然后再数交点个数,那该是多麻烦啊! 其实我们可以先来解决简单点的情况,分别找到1条、2条、3条、4条……这些直线有多少个交点。
1条直线最多有0个交点       0
2条直线最多有1个交点       1
3条直线最多有3个交点       1+2=3
4条直线最多有6个交点       1+2+3=6
5条直线最多有10个交点      1+2+3+4=10
6条直线最多有15个交点      1+2+3+4+5=15
……
所以2008条直线有1+2+3+4+5+…+2007=2015028个交点。
那么聪明的你,你能算出2008条直线最多可以把圆分成几部分么?
 
2.变化无穷、形迹不定的行程问题。
  提到行程问题,同学们可能就感到头疼,的确不错,因为行程问题中各个物体的速度、时间、路程都在变化,而且各个物体都是在运动中,位置是随着时间在变化,所以分析起来就很麻烦,为了更好的解决这个问题,我们把行程问题进行了细分:基本行程(单个物体)、平均速度、相遇、追及、流水行船、火车过桥、火车错车、钟表问题、环形线路上行程。只要我们掌握这些每个小类型中的诀窍,形成一种分析思路,复杂的行程问题无非是这些类型的变形而已,解决起来就容易多了。
 
3.抽象而又杂乱的数论问题。
  数论是从五年级的核心知识,无论是在哪本教材里,都用了很多的章节来讲解数论,要想解决复杂的数论问题,我们首先得掌握数论的基本知识:数的奇偶性、约数(现在叫因数)、倍数、公约数及最大公约数、公倍数及最小公倍数、质数、合数、分解质因数、整除、余数及同余等。这些基本知识点里又有些非常有代表性的例题,只要能掌握好这些知识点,然后做一定量的数论综合习题,碰到难的数论问题我们就容易解决了。
 
4.有趣的抽屉原理。
  生活中有很多有趣的事情,比如说:把4个苹果放到3个抽屉里,无论你怎么放,总有某个抽屉里至少有2个苹果,这就是抽屉原理。
对于抽屉原理我们只要找到苹果的个数a与抽屉的个数b,我们就可以得到下面的结论:
a÷b=r……q
q=0时,我们就说总有某个抽屉里至少有r个苹果;
q 0时,我们就说总有某个抽屉里至少有(r+1)个苹果。
比如说把32个苹果放进8个抽屉里,因为32÷8=4,无论怎么放,总有某个抽屉里有4个苹果。如果把35个苹果放进8个抽屉里,因为35÷8=4……3,无论怎么放,总有某个抽屉里有4+1=5个苹果。
  但是大部分的奥数题是没有告诉我们抽屉的个数的,那样我们就得自己构造抽屉,从而找出抽屉的个数。
 
5.图形面积计算。
  求图形的面积也是奥数中的一个难点,对于这类题我们首先要掌握好各种基本图形的面积计算公式,然后记住一些重要的结论:比如说三角形的等积变形、直角三角形中30度所对的边是斜边的一半、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中边与面积的关系。在计算面积时的方法有:直接计算法、割补法、方程法等。在图形面积计算中,难题往往得添加辅助线,这个就是难点所在,因为添加辅助线非常灵活,这就要我们多做些这方面的题,多积累一些添加辅助线的技巧,做到心中有数。
奥数录入:管理员    责任编辑:管理员 
  • 上一篇奥数:

  • 下一篇奥数:
  • 发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
    六种武器:解决奥数难题的常
    一年级学生如何学好奥数
    二年级学生如何学好奥数
    三年级学生如何学好奥数
    四年级学生如何学好奥数
    (只显示最新10条。评论内容只代表网友观点,与本站立场无关!)