| 网站首页 | 数学 | 名师 | 奥数 | 下载 | 素材 | 交流 | 智力 | 专业 | 设计 | 中学 | 数学博览 | 
您现在的位置: 小学数学专业网 >> 名师 >> 曹培英 >> 正文 用户登录 新用户注册
曹培英:警惕数学教学中的形式主义
作者:内有说明    文章来源:本站整理    点击数:    更新时间:2007-5-4
查找本文相关资源   相关书籍

从上个世纪50年代起,我国的数学教育学习前苏联,推崇概念的严谨性和知识的系统性,这对数学教学特别是对数学教师钻研业务产生了长远的、积极的影响。但若强调过分,就容易产生繁琐、雕琢的毛病,进而形成形式主义的倾向。主要表现如:

1.死扣字眼

小学数学的概念较少用符号表,绝大多数采用语言描述。因此,长期以来逐步形成了“咬文嚼字,抓住概念本质属性”的概念教学经验。正确应用这一经验,应当明确:一则,“咬文嚼字”一般处在概念形成过程的后阶段,并且常常需要和观察、析实例(包括正例和反例)等教学活动相结合;二则,并非所有概念都需要咬住个别字词不放。

例如,三角形的认识,教材的描是:“三角形是三条线段围成的图形”。教学时,再三启发,有学生说三角形是“三条线段组成的图形”、“三条线段搭起来的图形”,就是没有学生想到用“围成”这个词。于是,有教师在引进环节上下工夫,制作了一个课件,用动画表现一只小虫被困在三角形内,左冲突出不去,另一只小虫在开口的图形内进出自如。实践下来,还是没有学生自发地使用“围成”这个词。只有一个学生说到了“三角形是三条线段围起来的图形”。教师仍不满意,又想到了进一步的改进措施,即在引进环节,教师自己先有意识地使用围成”这个词来描小虫被困的情境,让学生自然而然地接受,然后模仿使用。

我们不禁要问,如此煞费苦心,为的是从学生嘴里说出某个词,是否必要?这里不讨论这种挤牙膏式的启发谈话的是非,仅分析“组成”与“围成”所谓“严谨性”。事实上,用“三条线段组成”或“三条线段围成”来描述三角形,都有漏洞,都能找到反例,见图。因此,认为用“围成”比用“组成”更准确,有如“五十步笑百步”。上面罗列的学生回答,在认识三角形的过程中或者说在学生三角形概念的形成过程中,都不妨认可。

也有人认为比较准确的描述是“三条线段首尾相接而成的图形”。然而,“首尾相接”又是什么意思呢?怎样描述“首尾相接”呢?如此追究下去,一个一看就懂的概念,不就越弄越玄、越弄越复杂了吗?可见,“纯文字叙述是那样容易做到无可挑剔的,它不是教学的重点,要淡化”是颇有见地的主张.

其实,对于三角之类不作严格刻画也无妨的概念,看图识字地说明一下“……像这样的图形叫做三角”就可以了。愿意说成用三条线段组成或围成的图形,当然也可以。过分在文字描述上花力气雕琢,实在意思不大。正如桌子、椅子这样的概念,人人都明白,人人都能正确识别,但要给出定义却比较困难,即使有了定义,作用也不大。所以,对这类概念的条文,淡化为好。

扣字眼发展至极端的另一种表现是扣标点符号。例如,为了训练学生的审题能力,除了给出“一句之别”、“一字之差”的题组练习之外,还设计了“一号之异”的对比题供学生辨析:

900公路,前10天平均每天修50,剩下的5天修完,平均每天修多少米?

900公路,前10天平均每天修50,剩下的5天修完。平均每天修多少米?

该练习的设计意图是,由于逗号改成了句号,使得看似一样的两个问题发生了实质性的变化:前一题求后5天里平均每天修多少米;后一题求前后15天里平均每天修多少米。明明可以说清楚也应该说清楚的地方,故意含糊其词,这种训练,即便有效果,也实在是难为了学生。

话又要说回来,反对死扣字眼,并不是不要关注叙述,而是“适可而止”、“宽容以待”,既注意考虑严格叙述的必要性和实际效果,同时以宽容的心态去评价、去鼓励学生用自己的语言说出对概念实质的领悟。

还需指出,主张“淡化纯文字叙述”的目的是“注重实质”②,而不是推崇教学内容叙述的“卡通化”。近年来新编的数学教材似乎有一种“卡通化”的趋势。它增加了教材的亲和力,受到了儿童的欢迎,这在小学低年级是必要的,因为好的插图还具有帮助缺乏阅读能力的儿童更好地感知问题情境的功能。但一味发展下去,同样有可能“物极必反”。学习数学需要一定的数学阅读能力,这在课堂上主要*阅读数学教材来培养。恐怕谁也不希望我们的数学教材成为养成“卡通化一代”的读物。香港的一些中小学正在开展一场“阅读运动”,就是为了拯救沉迷于卡通读物的新一代。这是我们可以引以为鉴的。

2.钻牛角尖

在应教育处主导地位的年代里,数学教学曾一度追求“讲深讲透”。后来,对认知与教学的阶段性、发展性有了更深刻的认识,意识到“讲深讲透”既无必要,也不可能,但分析教学内容钻牛角尖的倾向却延续了下来。

例如,曾见过这样一道选择题:

白兔只数-(  )=白兔比黑兔多的只数

A.白兔只数B.黑兔只数

C.和黑兔同样多的白兔只数

标准答案是C。为什么不能选B,理由是“怎么可从白兔里去掉黑兔呢?”对此,目前有一部分教师已能之一笑,但仍有部分教师认为,要讲算理就得这么讲。岂不知既然是“只数”,就不必计较是白、是黑。再说算理本就是人为的解释,何必只认一条死理,作茧自缚呢?

又如,在一节教学分解质因数的新授课上,教师安排的练习几乎都是围绕着分解质因数的形式做文。如,判断题:

12分解质因数,下面哪些算式是正确的。(学生读题时教师提醒,这里的“正确”含书写规范)

1123×4 (  )

2121×2×2×3  (  )

32×2×312 (  

4122×2×3(  

5123×2×2 (  )其中(3)、(4)、(5)式并无实质区别,但学生判断只有(4)式正确,教师认可。理由是必须从左往右看,从小到大列。课后与教师有段对话。

笔者:为什么要学习分解质因数?

教师:是不是为学习短除法打基础?

笔者:还有呢?

教师:推导求最大公约数和求最小公倍数时要用到分解质因数。

笔者:在这节课中能不能让学生初步感知分解质因数的作用呢?

教师:不知道。

笔:一个数,比如24,分解因数有几种可能?

教师:有多种。

笔者:分解质因数呢?

教师:如果交换位置不算,就只有一种。

笔者:质因数乘积的组合可以唯一确定一个数,这就是算术基本定理的主要内容。能通俗地渗透在这节课中吗?

教师:能的,不过从没想到,好像教参上也没讲起。

本案例所揭示的是教学同一课题时较为普遍的现象,说专注数学的形式而忽视数学实质,恐怕不为过。毕竟“从左往右看”、“从小到大写”等规定都是次要的,取消这些规定也未尝不可。而分解质因数的意义、作用,尽管只是初步的感性认识,也是更为本质的认知对。

还有不少无关宏旨的细节问题,如:“几份”、“几个”中的“几”是否包括1?三角形的高是一条线段还是一个长度?“x÷43……1是不是程?等等,往往令教师陷入无谓的争论,徒费精力。以“x÷43……1是不是方程为例,是与非,双方都摆了一些论据,谁也说服不了谁。要是换个角度思考,这样的方程有存在的必要,或者说有出现的必要吗?如果把它改写成x÷43.25或(x-14=3,问题就不复存在。为什么偏要在学生学习小数、分数之前,采用小学特有的表示方法写出这样的方程去为难学生呢?如果为了考察学生能否运用有余数除法各部分之间的关系进行解题,完全可以采用别的形式,以免出现歧义。

作为数学教师,最忌讳、最难堪的是被人指出犯有“科学性错误”。从笔者长期参加听课、评课活动的经历来看,被提升到科学性高度来谈的问题,确有一些是违背了数学规律或逻辑规则的错误,但更多的属于扣字眼、钻牛角尖的问题,属于对自然教学语言的挑剔。后一类批评一再耳闻目睹的结果,迫使教师谨小慎微,听任生动活泼的数学思维被字斟句酌的语言所压抑或篡改。

剖析上述种种形式主义现象的共同实质,从教学论的层面上来认识,就是片面理解科学性原则,过分追求严谨、严密,从而脱离了学生的认知实际,对教与学产生误导,师生的注意力都集中在吹毛求疵上,势必影响对概念本质的揭示与理解,冲淡数学思想方法的渗透与感悟。

再进一步,从哲学的层面上来认识,就涉及到数学概念与数学思维对象的关系。后者是客观的、实质的,前者是主观的、人为的、可变的。正如自然数,过去定义从1开始,现在定义从0开始,都是合理的。不论如何改变定义,思维的对象“有”与“无”、“1个”、“2个”……不会随着概念条文的改变而改变。所以,重要的是把握数学的对象,理解数学的实质,不必把概念,特别是概念的条文看得那么“神圣不可侵犯”。③有此认识,就不难理解弗赖登塔尔关于数学概念教学的两个问题:我们应当更为关注的究竟“是概念,还是思维对象?”“是概念的获得,还是思维对象的构成(通过心理操作)?”④这两个问题的内涵,可能会令人感觉过于深刻,难以落实,但领会其思想,对于我们认清概念教学的重点,恰如其分地把握概念的教学尺度,是颇为有益的。

文章录入:管理员    责任编辑:管理员 
  • 上一篇文章:

  • 下一篇文章:
  • 发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
    关于课程标准的几点思考
    数学还是那个数学 ——让数学…
    曹培英简介
    (只显示最新10条。评论内容只代表网友观点,与本站立场无关!)